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Abstract
The theory of adiabatic invariants has a long history and important applications
in physics. Here we treat exactly the general time-dependent 1D harmonic
oscillator, q̈ + ω2(t)q = 0, which cannot be solved in general. We follow
the time-evolution of an initial ensemble of phase points with sharply defined
energy E0 and calculate rigorously the distribution of energy E1 after time T,
and all its moments, especially its average value Ē1 and variance µ2. Using
WKB theory, we get the exact result for the leading asymptotic behaviour
of µ2.

PACS numbers: 05.45.−a, 45.20.−d, 45.30.+s, 47.52.+j

Adiabatic invariants, usually denoted by I, in time-dependent dynamical systems (not
necessarily Hamiltonian), are approximately conserved during a slow process of changing
system parameters over a long typical time scale T. This statement is asymptotic in the sense
that the conservation is exact in the limit T → ∞, whilst for finite T we see the deviation
�I = If − Ii of final value of If from its initial value Ii and would like to calculate �I . For
the 1D harmonic oscillator it is known since Lorentz (1911) and Einstein [1] that I = E/ω,
which is the ratio of the total energy E = E(t) and the frequency of the oscillator ω(t), both
being a function of time. Of course, 2πI is exactly the area in the phase plane (q, p) enclosed
by the energy contour of constant E. A general introductory account can be found in [2] and
references therein, especially [3, 4].

Here, in our new approach, we re-define the old problem of adiabatic invariants in the
harmonic oscillator by looking at the uniform canonical ensembles (i.e., uniform in the initial
angle variable �) of initial conditions, all at the sharp initial energy E0, and by studying the
distribution P(E1) of the final energies E1. The average final energy Ē1 also determines the
variance µ2 and all higher moments of P(E1). µ2 goes to zero when T → ∞ and we describe
this asymptotic behaviour. In doing so [5], we employ the concept of the transition matrix and
also our explicit WKB theory [6], which in the end provides explicit and general results in a
closed form, to all orders, so far unknown in the literature.
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We give a brief historical review of contributions to this field. After Einstein [1], Kulsrud
[7] was the first to show, using a WKB-type method, that for a finite T , I is preserved to all
orders, for the harmonic oscillator, if all derivatives of ω vanish at the beginning and at the
end of the time interval, whilst if there is a discontinuity in one of the derivatives he estimated
�I but did not give our explicit general expressions (37) and (38). Hertweck and Schlüter
[8] did the same thing independently for a charged particle in a slowly varying magnetic field
for infinite time domain. Kruskal, as reported in [10], and Lenard [9] studied more general
systems, whilst Gardner [10] used the classical Hamiltonian perturbation theory. Courant
and Snyder [11] have studied the stability of the synchrotron and analysed I employing the
transition matrix. The interest then shifted to the infinite time domain. Littlewood [12]
showed for the harmonic oscillator that if ω(t) is an analytic function, I is preserved to all
orders of the adiabatic parameter ε = 1/T . Kruskal [13] developed the asymptotic theory of
Hamiltonian and other systems with all solutions nearly periodic. Lewis [14], using Kruskal’s
method, discovered a connection between I of the 1D harmonic oscillator and another nonlinear
differential equation. Later on Symon [15] used Lewis’ results to calculate the (canonical)
ensemble average of I and its variance, which is the analogue of our Ē1 and µ2. Finally, Knorr
and Pfirsch [16] proved �I ∝ exp(−const ε). Meyer [17, 18] relaxed some conditions and
calculated the constant, const. Exponential preservation of I for an analytic ω on (−∞, +∞)

with constant limits at t → ±∞, is thus well established [3].
In this work, we confine ourselves to the 1D general time-dependent harmonic oscillator,

described by the Newton equation

q̈ + ω2(t)q = 0 (1)

and work out rigorously P(E1) and all its moments. Given the general ω(t) the calculation of
q(t) is already a very difficult and unsolvable problem. In the sense of mathematical physics
(1) is exactly equivalent to the 1D stationary Schrödinger equation: the coordinate q appears
instead of the probability amplitude ψ , time t appears instead of the coordinate x and ω2(t)

plays the role of E − V (x) = energy − potential. In this paper, we solve the above-stated
problem for the general 1D harmonic oscillator, but the details will be given elsewhere [5].

We begin by defining the system by giving its Hamilton function H = H(q, p, t), whose
numerical value E(t) at time t is precisely the total energy of the system at time t, and for the
one-dimensional harmonic oscillator this is

H = p2

2M
+

1

2
Mω2(t)q2, (2)

where q, p,M,ω are the coordinate, the momentum, the mass and the frequency of the linear
oscillator, respectively. The dynamics is linear in q, p, as described by (1), but nonlinear as a
function of ω(t), and therefore, is subject to the nonlinear dynamical analysis. By using the
index 0 and 1, we denote the initial (t = t0) and final (t = t1) value of the variables, and by
T = t1 − t0 we denote the time interval of changing the parameters of the system.

We consider the phase-flow map (we shall call it transition map)

� :

(
q0

p0

)
�→

(
q1

p1

)
. (3)

Because equations of motion are linear in q and p, and since the system is Hamiltonian, � is
a linear area preserving map, that is

� =
(

a b

c d

)
, (4)
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with det(�) = ad − bc = 1. Let E0 = H(q0, p0, t = t0) be the initial energy and
E1 = H(q1, p1, t = t1) be the final energy, that is

E1 = 1

2

(
(cq0 + dp0)

2

M
+ Mω2

1(aq0 + bp0)
2

)
. (5)

Introducing the new coordinates, namely the action I = E/ω and the angle φ,

q0 =
√

2E0

Mω2
0

cos φ, p0 =
√

2ME0 sin φ (6)

from (5), we obtain

E1 = E0(α cos2 φ + β sin2 φ + γ sin 2φ), (7)

where

α = c2

M2ω2
0

+ a2 ω2
1

ω2
0

, β = d2 + ω2
1M

2b2, γ = c d

Mω0
+ abM

ω2
1

ω0
. (8)

Given the uniform probability distribution of initial angles φ equal to 1/(2π), which defines
our initial ensemble at time t = 0, we can now calculate the averages. Thus

Ē1 = 1

2π

∮
E1 dφ = E0

2
(α + β). (9)

That yields E1 − Ē1 = E0(δ cos 2φ + γ sin 2φ) and

µ2 = (E1 − Ē1)2 = E2
0

2
(δ2 + γ 2), (10)

where we have denoted δ = (α − β)/2.
It follows from (8), (9) that we can also write (10) in the form

µ2 = (E1 − Ē1)2 = E2
0

2

[(
Ē1

E0

)2

− ω2
1

ω2
0

]
. (11)

It is straightforward to show that for arbitrary positive integer m, we have (E1 − Ē1)2m−1 = 0
and

(E1 − Ē1)2m = (2m − 1)!!

m!
((E1 − Ē1)2)m. (12)

Thus the 2mth moment of P(E1) is equal to (2m − 1)!!µ2m/m!, and therefore, indeed, all
moments of P(E1) are uniquely determined by the first moment Ē1. Obviously, P(E1) is
in this sense universal, because it depends only on the average final energy Ē1 and the ratio
ω1/ω0 of the final and initial frequencies, and does not depend otherwise on any details of
ω(t). It has a finite support (Emin, Emax), it is an even distribution w.r.t. Ē1 = (Emin +Emax)/2,
and has an integrable singularity of the type 1/

√
x at both Emin and Emax. This singularity

stems from a projection of the final ensemble at t1 onto the curves of constant final energies
E1 of H(q, p, t1). Of course, all that we say here for the distribution of energies E1 also
holds true for the final action, the adiabatic invariant I1 = E1/ω1. It is perhaps worthwhile
to mention that the moments of our distribution according to (12) grow as 2m/

√
πm, whilst

e.g. in the Gaussian distribution they grow much faster, namely, as 2m(m + 1/2)/
√

π , where
(x) denotes the gamma function.

Expression (11) is positive definite by definition and this leads to the first interesting
conclusion: in full generality (no restrictions on the function ω(t)) we always have
Ē1 � E0ω1/ω0, and therefore, the final average value of the adiabatic invariant Ī1 = Ē1/ω1
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is always greater than or equal to the initial value I0 = E0/ω0. In other words, the average
value of the adiabatic invariant never decreases, which is a kind of irreversibility statement.
Moreover, it is constant only for infinitely slow processes T = ∞, which is an ideal adiabatic
process, i.e. µ = 0. For periodic processes ω1 = ω0 we see that always Ē1 � E0, so the mean
energy never decreases. The other extreme to T = ∞ is the instantaneous (T = 0) jump
where ω0 switches to ω1 discontinuously, whilst q and p remain continuous, and this results
in a = d = 1 and b = c = 0, and then we find

Ē1 = E0

2

(
ω2

1

ω2
0

+ 1

)
, µ2 = E2

0

8

[
ω2

1

ω2
0

− 1

]2

. (13)

Below we shall treat the special case with ω2
1 = 2ω2

0, and thus will find µ2
/
E2

0 = 1/8.

Our general study now focuses on the calculation of the transition map (4), namely,
its matrix elements a, b, c, d. Starting from the Hamilton function (2) and its Newton
equation (1), we consider two linearly independent solutions ψ1(t) and ψ2(t) and introduce
the matrix

�(t) =
(

ψ1(t) ψ2(t)

Mψ̇1(t) Mψ̇2(t)

)
. (14)

Consider a solution q̂(t) of (1), such that

q̂(t0) = q0, ˙̂q(t0) = p0/M. (15)

Because ψ1 and ψ2 are linearly independent, we can look for q̂(t) in the form

q̂(t) = Aψ1(t) + Bψ2(t). (16)

Then A and B are determined by(
A

B

)
= �−1(t0)

(
q0

p0

)
. (17)

Let q1 = q̂(t1), p1 = M ˙̂q(t1). Then from (15)–(17), we see that(
q1

p1

)
= �(t1)�

−1(t0)

(
q0

p0

)
. (18)

We recognize the matrix on the right-hand side of (18) as the transition map �, that is

� =
(

a b

c d

)
= �(t1)�

−1(t0). (19)

Due to lack of space, we mention only linear model: ω2(t): ω2
0 for t � 0, ω2

0 + (t/T )
(
ω2

1 − ω2
0

)
for 0 < t < T and ω2

1 for t � T . Equation (1) can be solved exactly in terms of the Airy
functions yielding Ē1, µ

2 etc. As an example, if ω2
0 = 1 and ω2

1 = 2, µ2 goes correctly
from 1/8 at T = 0 to zero as T → ∞, in a typical oscillatory way. Using the asymptotic
expressions for the Airy functions, we find the leading asymptotic approximation

µ2

E2
0

= (E1 − Ē1)2

E2
0

≈ ε2

128

(
9 − 4

√
2 cos

(
4 − 8

√
2

3ε

))
(ε = 1/T ). (20)

We proceed with the calculation of the transition map � in the general case, and because
(1) is generally not solvable, we have ultimately to resort to some approximations. Since
the adiabatic limit ε → 0 is the asymptotic regime that we would like to understand, the
application of the rigorous WKB theory (up to all orders) is most convenient, and usually it
turns out that the leading asymptotic terms are well described by just the leading WKB terms.
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We introduce re-scaled and dimensionless time λ = εt , so that (1) is turned to

ε2q ′′(λ) + ω2(λ)q(λ) = 0. (21)

Let q+(λ) and q−(λ) be two linearly independent solutions of (21). Then the matrix (14) takes
the form

�λ =
(

q+(λ) q−(λ)

εMq ′
+(λ) εMq ′

−(λ)

)
(22)

and taking into account that λ0 = εt0, λ1 = εt1, we obtain for the matrix (19) the expression
� = �λ(λ1)�

−1
λ (λ0). We now use the WKB method in order to obtain the coefficients a, b, c, d

of the matrix �.1 To do so, we look for solution of (21) in the form q(λ) = w exp{σ(λ)/ε} ,
where σ(λ) is a complex function that satisfies the differential equation

(σ ′(λ))2 + εσ ′′(λ) = −ω2(λ) (23)

and w is some constant with dimension of length. The WKB expansion for the phase is
σ(λ) = ∑∞

k=0 εkσk(λ). Substituting this expression into (23) and comparing like powers of ε

gives the recursion relation

σ ′2
0 = −ω2(λ), σ ′

n = − 1

2σ ′
0

(
n−1∑
k=1

σ ′
kσ

′
n−k + σ ′′

n−1

)
. (24)

Here, we apply our WKB notation and formalism [6] and we can choose σ ′
0,+(λ) =

iω(λ) or σ ′
0,−(λ) = −iω(λ). That results in two linearly independent solutions of (21) given

by the WKB expansions with the coefficients

σ0,±(λ) = ±i
∫ λ

λ0

ω(x) dx, σ1,±(λ) = −1

2
log

ω(λ)

ω(λ0)
,

σ2,± = ± i

8

∫ λ

λ0

3ω′(x)
2 − 2ω(x)ω′′(x)

ω(x)3 dx, . . .

Since ω(λ) is a real function we deduce from (24) that all functions σ ′
2k+1 are real and

all functions σ ′
2k are purely imaginary and σ ′

2k,+ = −σ ′
2k,−, σ ′

2k+1,+ = σ ′
2k+1,−, where

k = 0, 1, 2, . . . , and thus we have σ ′
+ = A(λ) + iB(λ), σ ′

− = A(λ) − iB(λ), where
A(λ) = ∑∞

k=0 ε2k+1σ ′
2k+1(λ), B(λ) = −i

∑∞
k=0 ε2kσ ′

2k,+(λ). Integration of the above equations

yields σ+ = r(λ) + is(λ), σ− = r(λ) − is(λ), where r(λ) = ∫ λ

λ0
A(x) dx, s(λ) = ∫ λ

λ0
B(x) dx.

Below we shall denote s1 = s(λ1).
Using this notation, we find that the elements of the transition matrix � have the following

form, after taking into account that det(�) = ab − cd = 1,

a = − 1√
B0B1

[
A0 sin

( s1

ε

)
− B0 cos

( s1

ε

)]
, b = 1

M
√

B0B1
sin

( s1

ε

)
,

c = − M√
B0B1

[
(A0A1 + B0B1) sin

( s1

ε

)
+ (A0B1 − A1B0) cos

( s1

ε

)]
,

d = 1√
B0B1

[
A1 sin

( s1

ε

)
+ B1 cos

( s1

ε

)]
.

(25)

This is so far exact result, based on the WKB-expansion technique. What we are mostly
interested in is the asymptotic behaviour of µ2 when ε is small and tends to zero.

1 There is a substantial literature on the WKB method, which due to limited space cannot be reviewed here. But
we should mention the classic works by Fröman and Fröman, who have found a number of interesting relationships,
e.g. a relation between the even and odd order terms [19], although we do not use it here, so that our exposition is
self-contained.
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Let us consider the first-order WKB approximation, that is

A(λ) ≈ εσ ′
1,+(λ), B(λ) ≈ σ ′

0,+(λ)

i
= ω(λ). (26)

We find for the variance (11)

µ2

E2
0

= ε2

(
ω2

1ω
′
0

2

8ω6
0

+
ω′

1
2

8ω2
0ω

2
1

− ω′
0ω

′
1

4ω4
0

cos

(
2

ε

∫ λ1

λ0

ω(x) dx

))
+ O(ε3). (27)

Substituting into (27) ω(λ) = √
1 + λ, we obtain exactly the approximation (20).

Suppose now that all derivatives at λ0 and λ1 vanish up to order (n − 1), i.e.
ω′(λ0) = ω′(λ1) = · · · = ω(n−1)(λ0) = ω(n−1)(λ1) = 0 and ω(n)(λ0)ω

(n)(λ1) �= 0. Then
σ ′

1(λ0) = σ ′
1(λ1) = · · · = σ ′

n−1(λ0) = σ ′
n−1(λ1) = 0, σ ′

n(λ0)σn(λ1) �= 0.

Hence, in the case n = 2k − 1 we can assume

A(λ) = ε2k−1σ ′
2k−1,+(λ) + h.o.t., B(λ) = ω(λ) − iε2kσ ′

2k,+(λ) + h.o.t. (28)

and obtain

µ2

E2
0

= ε4k−2

(
σ ′

2k−1,+(λ1)
2

2ω2
0

+
ω2

1σ
′
2k−1,+(λ0)

2

2ω4
0

− ω1σ
′
2k−1,+(λ0)σ

′
2k−1,+(λ1)

ω3
0

cos

(
2s1

ε

))
+ O(ε4k−1). (29)

In the case when n = 2k, we can suppose

A(λ) = ε2k+1σ ′
2k+1,+(λ) + h.o.t., B(λ) = ω(λ) − iε2kσ ′

2k,+(λ) + h.o.t. (30)

Then, similarly as above, we obtain

µ2

E2
0

= −ε4k

(
σ ′

2k,+(λ1)
2

2ω2
0

+
ω2

1σ
′
2k,+(λ0)

2

2ω4
0

− ω1σ
′
2k,+(λ0)σ

′
2k,+(λ1)

ω3
0

cos

(
2s1

ε

))
+ O(ε4k+1). (31)

From this we can conclude that if ω(t) is of class Cm (having m continuous derivatives,
m = n − 1) µ2 goes to zero oscillating but in the mean as ∝ ε2n = ε2(m+1). If ω(t) is an
analytic function on the real-time axis (−∞, +∞), the decay to zero is oscillating and on the
average is exponential ∝ exp(−const ε) [3, 16–18]. This exponential smallness stems from
the divergence of the relevant series and has been extensively studied in related works [20–24],
where the resummation techniques have been devised.

Our method also enables us to easily calculate higher terms in (27) and in the general
equations (29) and (31) [5].
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